Discrete Domain Switching

in Scaled Oxide-Channel Ferroelectric FETs

<u>Yanjie Shao</u>, Elham R. Borujeny, Jorge Navarro, John Chao-Chung Huang, Tyra E. Espedal, Dimitri A. Antoniadis and Jesús A. del Alamo Massachusetts Institute of Technology

Sponsorship: SRC (#3140.001) and Intel

82nd Device Research Conference Jun. 23, 2024 – Jun. 26, 2024

Ferroelectric Hf_xZr_{1-x}O

Ferroelectric (FE) Hf_xZr_{1-x}O (HZO):

- stores polarization charge due to unique crystal structure
- CMOS compatible

2

Integration of FE-HZO on CMOS: from FEOL to BEOL

Our focus: BEOL-compatible FE-FET technology for memory and AI applications

Design and fabrication of BEOL FE-FETs

- 50 nm W sputtering
- W back gate patterning
- 10nm HZO/1nm Al_2O_3 by PEALD
- RTA @ T = 400 °C, 1 min
- Gate via opening
- ITO sputtering
- Mesa patterning
- Ni/Au contact deposition
- Probe-pad fabrication
- CMOS-compatible thermal budget
- Highly-scaled device geometry

Working principle of FE-FETs

• Two $V_{\rm T}$ states with complete FE polarization switching

DC I-V characteristics of FE-FETs

- Linear turn-on and high on-state current
- Prominent counter-clockwise FE memory behavior
- Large MW = 2.2 V @ *L*_{ch} = 40 nm

Impact of L_{ch} scaling on MW

- Saturated MW vs. L_{ch} when L_{ch} < 80 nm
- Sharp decrease of MW when $L_{ch} > 80 \text{ nm}$
- MW rather independent of channel width

Gradual conductance switching: artificial synapses

Read after each pulse @ V_{ds} = 0.05 V, V_{gs} = -0.8 V

- Wide channel ~5 μm
- Conductance dynamic range ~5x
- Overall symmetric modulation

Discrete conductance switching: multi-state memory

- Narrow channel = 230 nm
- 3 distinct conductance states
- Discrete switching seen in highly-scaled devices (both W_{ch} and L_{ch})

Discrete domain switching

- Discrete local activation fields (*E*_a) for different domains
- Wider devices → smoother distribution of local activation field

An interesting question: what is the domain size?

- Wide $E_g > 3$ eV for ITO \rightarrow weak vertical E-field in the off state in the channel
- Switching of FE polarization in a domain likely requires direct contact to S/D
- Domain size estimated to be ~40 nm

Endurance characteristics

- Endurance ~10⁵ cycles
- Clear increase of current in "Erase" state with more cycling

Endurance characteristics in the literature

- Negative V_t shift commonly seen in oxide-channel FE-TFTs
- Origin of this?

Understanding endurance: V_t and S shift

range that is at least one decade

- Upward sweep: $\Delta V_t < 0$, S unchanged \rightarrow no interface state generation
- Downward sweep: V_t nearly unchanged

Understanding endurance: domain pinning

- Virgin narrow-channel device (no endurance cycling)
- Conductance not going back to original value after full cycle
- Pinning of certain FE domains in low-V_t state ("up" direction)
- Origin of oxide-channel FE-FET fatigue?

Hypothesis on domain switching and pinning

• Domains can be pinned due to fatigue or due to electrostatically inactive

Possible origin of domain structures

Lederer, APL 2019

- Polycrystalline nature of HZO film
- Grain size ~ 20-40 nm, close to our estimated domain size

Conclusions

- Rich functionality of FE-HZO for BEOL applications
- Large MW requires $L_{ch} < ~80$ nm, while MW independent of W_{ch}
- Discrete domain switching observed in narrow-width oxide-channel FE-FETs
- FE-FET fatigue arises from negative $V_{\rm t}$ shift and domain pinning

Acknowledgements

- MIT Microsystems Technology Laboratories
- MIT.nano
- Prof. Pedro Barquinha's research group at NOVA University Lisbon
- SRC and SRC liaisons
- Unrestricted seed grant from Intel through the MIT AI Hardware Program

MIT AI Hardware Program SRC intel.

